skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Villegas, Laura O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop and characterize a parameter estimation methodology for rotating core collapse supernovae based on the gravitational wave core bounce phase and real detector noise. Expanding on the evidence from numerical simulations for the deterministic nature of this gravitational wave emission and about the dependence on the ratio $$\beta$$ between rotational kinetic to potential energy, we propose an analytical model for the core bounce component which depends on $$\beta$$ and one phenomenological parameter. We validate the goodness of the model with a pool of representative waveforms. We use the fitting factor adopted in compact coalescing binary searches as a metric to quantify the goodness of the analytical model and the template bank generated by the model presents an average accuracy of 94.4\% when compared with the numerical simulations and is used as the basis for the work. The error for a matched filter frequentist parameter estimation of $$\beta$$ is evaluated. The results obtained considering real interferometric noise and a waveform at a distance of 10 kpc and optimal orientation, for one standard deviation estimation error of the rotation parameter \(\beta\) lie in the range of \(10^{-2}\) to \(10^{-3}\) as \(\beta\) increases. The results are also compared to the scenario where Gaussian recolored data is employed. The analytical model also allows for the first time, to compute theoretical minima in the error for $$\beta$$ for any type of estimator. Our analysis indicates that the presence of rotation would be detectable at 0.5 Mpc for third generation interferometers like CE or ET. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026